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Abstract

A method of coalescing a particle distribution that occupies a ring in the phase
space of one transverse degree-of-freedom has been proposed by Derbenev. [1] The
purpose of this note is to outline a potential experimental realization of the technique
using the electron beam of a photoinjector.

1 Introduction

The process of adiabatic capture into RF buckets has a very interesting analog in the
transverse plane - another invention of Derbenev’s [1]. Suppose one starts with a ring
beam in transverse configuration space, such as may be produced by a ring laser spot on
a photocathode. Then put the bunch through a round-to-flat transformer[2] so that one
has a ring in the phase space of one of the transverse degrees of freedom. So now in that
degree-of-freedom, there is a distribution with some width ∆a in amplitude and uniformly
populated in angle φ.

Now suppose the bunch enters a focusing channel in which there is an octopole term
so that the phase advance is amplitude dependent and becomes an integer multiple of 2π
at an amplitude a0. Steering dipoles are installed to produce deflections in synchronism
with the phase advance at the amplitude a0, and the dipole strength increases gradually
along the channel, mimicking the adiabatic turn-on of the RF in the longitudinal case. In
synchrotron language, there is a driven integer resonance at amplitude a0.

The point of this note is to see if this process can be demonstrated in one of today’s
photoinjectors at reasonable cost, as another of the phase-space manipulations that may
play a role in future injection systems. Incorporation of the slow increase of the dipole
terms suggests that a ring rather than a linear channel is the most reasonable structure,
but the discussion will be carried on for a while without making that choice.

∗The Fermi National Accelerator Laboratory is operated under contract with the US Department of
Energy
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2 Parameter Definition

Let L be the distance along the central trajectory of the structure over which the phase
of a (linear) oscillation would advance by almost 2π, increasing with amplitude to 2π at
amplitude a0 due to the octopole driven tune-shift. Let ∆B(x, s) represent the dipole and
octopole fields, where x is the transverse displacement from and s distance along the central
trajectory. Let ψ represent the phase modulo 2π at some periodic points of observation
separated by L in the structure.

Then, proceeding in the spirit of a perturbation of the linear motion, the change in
amplitude resulting from a single passage of the distance L is[3]

∆a =
β0

(Bρ)

∫ L

0

(
β(s)
β0

)1/2

∆B(x, s) sin[ψ + φ(s)]ds (1)

where β0 is the amplitude function at the point of observation, (Bρ) is the magnetic rigidity,
and the unperturbed motion is described by

x(s) = a

(
β(s)
β0

)1/2

cos[ψ + φ(s)]. (2)

Using subscripts to represent the number of poles in a field contribution, write ∆B =
∆B2 + ∆B8. Then for the integer resonance driving field take

∆B2 = −
(
β0

β(s)

)3/2

B0 cosφ(s) (3)

where B0 is a positive constant. The reason for the explicit choice of sign will be apparent
later. Setting ds = β(s)dφ in Eq. 1, one finds

∆a2 = − πβ2
0

(Bρ)
B0 sinψ = −πβ0

L
β0Θ2 sinψ. (4)

In the rightmost expression of Eq. 4, the angle Θ2 is the deflection that would be produced
if B0 extended a distance L; Θ2 ≡ B0L/(Bρ). This expression looks reasonable; the factor
πβ0/L is typically of unit order of magnitude while Θ2β0 is the characteristic change in
amplitude due to the angular deflection Θ2.

The octopole field must be chosen so that it does not contribute to ∆a. This can be
accomplished by the choice

∆B8 =
(
B′′′(s)

6

)
x3 =

(
β0

β

)3 (B′′′

6

)
0
x3. (5)

Then

∆a8 =
β2

0

(Bρ)

(
B′′′

6

)
0
a3
∫

sin[ψ + φ] cos3[ψ + φ]dφ = 0 (6)
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as desired.
The treatment for phase advance follows in an analogous fashion, starting from

∆ψ =
β0

(Bρ)

∫ L

0

(
β(s)
β0

)1/2 ∆B(x, s)
a

sin[ψ + φ(s)]ds. (7)

For the dipole contribution,

∆ψ2 = − πβ2
0

(Bρ)
B0

a
cosψ = −πβ0

L

β0Θ2

a
cosψ. (8)

In the case of the octopole, the integral no longer vanishes but yields 3π/4 with the result

∆ψ8 =
3
4
πβ2

0

(Bρ)

(
B′′′

6

)
0
a2. (9)

Now modify Eq. 9 in two ways. Replace a2 by a2 − a2
0 in order to reference the rotation

in phase space to the radius a0. And in a similar fashion to the use of Θ2, define the
corresponding quantity for the octopole field as the total angular deflection at radius a0.
The result is

∆ψ8 =
3
4
πβ0

L

β0Θ8

a3
0

(a2 − a2
0), (10)

where Θ8 ≡ (B′′′/6)0 a3
0L/(Bρ).

To reflect the ramp of the dipole field, place a factor b with 0 ≤ b ≤ 1 in front of Θ2.
Set a = ra0. Finally, interpreting ∆a and ∆ψ as derivatives da/dn = a0dr/dn and dψ/dn
gives the set of differential equations

dr

dn
= −kΘ2b sinψ (11)

dψ

dn
= k

[
3
4
Θ8(r2 − 1)− 1

r
Θ2b cosψ

]
(12)

k ≡ πβ0

L

β0

a0
. (13)

Eqs. 11, 12 are of the form of Hamilton’s equations,

dr

dn
= −1

r

∂H

∂ψ
,
dψ

dn
=

1
r

∂H

∂r
(14)

for the Hamiltonian
H = k

[
3Θ8

16
(r2 − 1)2 −Θ2br cosψ

]
. (15)

Fixed points are at ψ = 0 and ψ = π, stable and unstable respectively. Placement of
the stable fixed point at the “below transition” location was the motivation for the sign
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choice in Eq. 3. From the expression for the separatrix passing through r = 1, ψ = π, the
width of the resonance island at ψ = 0 is

w = 2
(

8
3

Θ2

Θ8

)1/2

. (16)

Expansion of Eqs. 11 and 12 in the neighborhood of the stable fixed point gives, after
combination into a second order equation for ψ:

d2ψ

dn2
+ (2πνs)2ψ = 0, νs ≡

[
3

32π2
k2Θ2Θ8b

]1/2

. (17)

The quantity νs, the analog of the synchrotron oscillation tune, presumably must be suffi-
ciently small compared with unity to satisfy the adiabaticity requirement.

As input parameters, let us choose L, a0, w, and ∆φ, this last being the difference in
phase advance between amplitude a0 and small oscillations. With use of Eq. 12,

Θ8 =
4La0

3πβ2
0

∆φ (18)

and from Eq. 16

Θ2 =
3
32

Θ8w
2. (19)

The relationship between β0 and L depends on the focusing structure. For a weak focusing
ring of circumference L and field index nf , β0 = L/[2π

√
(1− nf )], while for a sequence of

FODO cells, β0 ≈ (2 +
√

2)L/8.

3 Channel Example

As an example, suppose the channel is a ring bending magnet of the sort that might be
used in a weak focusing synchrotron. The small amplitude tune, ν, is somewhat less than
one, and an octopole term constant in azimuth produces the integer tune at the appropriate
amplitude. The dipole kick is provided at a single location on the ring. Of course, this
simple example makes no provision for injection or extraction.

The equation of motion for transverse oscillations of a particle about the beam axis
within the bend magnet is

d2u

dn2
= −(2πν)2u− LΘ8

a0
u3. (20)

A computer code was written using R.[4] To illustrate the process, we envisage the syn-
chrotron described above and model it as m sections of length L/m with octupole “kicks”
in the middle of each section. At one of the section interfaces in the ring a ramped dipole
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kick is provided. Defining u ≡ x/a0, v ≡ β0x
′/a0, and ~u ≡ (u, v)T , we cast Eq. 20 into

matrix form,
~ui+1 = R[R~ui + ~Θ(R~ui)], (21)

transporting ~u through the ith section. The matrix R is a rotation matrix through angle
2πν/m/2, and the function ~Θ operating on the vector ( ~X) = (x1, x2)T is determined by the
required octupole strength. In terms of Θ8 the kick per section will be ∆v = β0∆x′/a0 =
(β0/a0)(Θ8/m)u3 = 8

3(∆φ/m)u3, or

Θ( ~X) =

(
0

−8∆φ
3m x3

1

)
. (22)

In the simulation, m is chosen to be 32.
Similarly, the dipole kick given once per revolution (once per m sections) is to generate

∆v = (β0/a0)Θ2, or

∆~u =

(
0

1
4∆φ w2

)
. (23)

In the code the dipole field is increased over Nb revolutions according to

b(n) = 1− e−5(n/Nb)
2
. (24)

To provide a smooth adiabatic ramp, Nb is chosen to be several thousand turns.
Using the parameters L = 2 m, a0 = 4 × 10−3 m, ∆φ = π/8 and w = 0.5 the code

produces the phase space plots shown in Figure 1. The initial distribution is a uniformly
populated ring of 100 particles at r = 1, and the next three plots are for revolution numbers
1000, 2000, and 4000. Figure 2 shows the initial and final (Nb = 104) phase space plots,
the dipole ramp function b(n), and the variation of the rms values of the variables u and
v during the process. As can be seen, the distribution settles down at about turn number
4-5000, where b has reached about 60-70% of its final value.

4 Discussion

As expected based on what we have been told by colleagues who have modeled the
process[5], the initial ring distribution is reconfigured into a bunch-like shape. The be-
havior is indeed quite similar to the adiabatic capture process in the longitudinal degree-
of-freedom.

Several measures are needed to turn this process into a candidate for construction. To
accommodate injection, extraction, and diagnostics, one approach would be to turn the
system into a racetrack by introduction of two straight sections equipped with quadrupoles
for β-matching. In order to avoid introduction of octopole resonance driving terms, the
phase advance of each such straight section should be 2π or a multiple thereof. Because
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of the use of the intrinsically sensitive integer tune, provision for correctors will likely be
necessary.

No mention has been made of bunch length effects; in particular, the need for an
isochronous structure. Suppose the momentum spread is at the ∆p/p ≈ 10−3 level. Then
for the weak focusing ring, a bunch of initially negligible length would spread into one
wrapped several times around the circumference. The insertion of negative bends remi-
niscent of the stellarator approach may be used to address this problem. But inclusion of
momentum spread into the model may uncover the need for correction of chromatic effects.

The large number of iterations used in the example of the preceding section is worri-
some. The distribution settles down at some 5000 turns, but that is over 30 µs, which is
a long time if a rather rapid cycling application is envisaged. A degree of miniaturization
coupled with tighter resonance dipole spacing could be explored. But there is a qualita-
tive distinction between this process and the other two phase space manipulations that
we have had occasion to study, namely, the flat beam transformation cited earlier, and
the longitudinal-transverse interchange method[6]. Both of those involve a single passage
through a rather short structure.

Finally, despite the use of the term “coalesce”, the technique conserves phase space,
therefore any advantage in its use must be found in amelioration of space charge effects in
the bunch generation steps.
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Figure 1: Phase space plots during adiabatic increase of dipole field. After 4000 revolutions,
the deflection angle is 55% of Θ2.
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Figure 2: Top: Initial and final phase space plots; final value of dipole deflection angle
is Θ2. Bottom: Ramp profile of dipole field (left), and development of rms of particle
distribution (right) in the variables u (red) and v (black).
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